Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(37): eadh4302, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703378

RESUMO

As the Moon migrated away from Earth, it experienced a major spin axis reorientation. Permanently shadowed regions (PSRs), which are thought to have trapped ices and are a main focus of lunar exploration, appeared and grew after this (Cassini state) transition and are often younger than their host craters. Here, we calculate the lunar spin axis orientation and the extent of PSRs based on recent advances for the time evolution of the Earth-Moon distance. The solar declination reached twice its current value 2.1 billion years (Ga) ago, when the PSR area was about half as large. The PSR area becomes negligible beyond 3.4 Ga ago. The site of an artificial impact in Cabeus Crater, where various volatiles have been detected, became continuously shadowed only about 0.9 Ga ago, and hence, cold-trapping has continued into this relatively recent time period. Overall estimates for the amount of cold-trapped ices have to be revised downward.

2.
Astron J ; 159(4)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32255816

RESUMO

Recent dynamical analyses suggest that some Jupiter family comets (JFCs) may originate in the main asteroid belt instead of the outer solar system. This possibility is particularly interesting given evidence that icy main-belt objects are known to be present in the Themis asteroid family. We report results from dynamical analyses specifically investigating the possibility that icy Themis family members could contribute to the observed population of JFCs. Numerical integrations show that such dynamical evolution is indeed possible via a combination of eccentricity excitation apparently driven by the nearby 2:1 mean-motion resonance with Jupiter, gravitational interactions with planets other than Jupiter, and the Yarkovsky effect. We estimate that, at any given time, there may be tens of objects from the Themis family on JFC-like orbits with the potential to mimic active JFCs from the outer solar system, although not all, or even any, may necessarily be observably active. We find that dynamically evolved Themis family objects on JFC-like orbits have semimajor axes between 3.15 au and 3.40 au for the vast majority of their time on such orbits, consistent with the strong role that the 2:1 mean-motion resonance with Jupiter likely plays in their dynamical evolution. We conclude that a contribution from the Themis family to the active JFC population is plausible, although further work is needed to better characterize this contribution.

3.
Nature ; 559(7713): 223-226, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29950718

RESUMO

'Oumuamua (1I/2017 U1) is the first known object of interstellar origin to have entered the Solar System on an unbound and hyperbolic trajectory with respect to the Sun1. Various physical observations collected during its visit to the Solar System showed that it has an unusually elongated shape and a tumbling rotation state1-4 and that the physical properties of its surface resemble those of cometary nuclei5,6, even though it showed no evidence of cometary activity1,5,7. The motion of all celestial bodies is governed mostly by gravity, but the trajectories of comets can also be affected by non-gravitational forces due to cometary outgassing8. Because non-gravitational accelerations are at least three to four orders of magnitude weaker than gravitational acceleration, the detection of any deviation from a purely gravity-driven trajectory requires high-quality astrometry over a long arc. As a result, non-gravitational effects have been measured on only a limited subset of the small-body population9. Here we report the detection, at 30σ significance, of non-gravitational acceleration in the motion of 'Oumuamua. We analyse imaging data from extensive observations by ground-based and orbiting facilities. This analysis rules out systematic biases and shows that all astrometric data can be described once a non-gravitational component representing a heliocentric radial acceleration proportional to r-2 or r-1 (where r is the heliocentric distance) is included in the model. After ruling out solar-radiation pressure, drag- and friction-like forces, interaction with solar wind for a highly magnetized object, and geometric effects originating from 'Oumuamua potentially being composed of several spatially separated bodies or having a pronounced offset between its photocentre and centre of mass, we find comet-like outgassing to be a physically viable explanation, provided that 'Oumuamua has thermal properties similar to comets.

4.
Artigo em Inglês | MEDLINE | ID: mdl-26066166

RESUMO

On the Moon, water molecules and other volatiles are thought to migrate along ballistic trajectories. Here, this migration process is described in terms of a two-dimensional partial differential equation for the surface concentration, based on the probability distribution of thermal ballistic hops. A random-walk model, a corresponding diffusion coefficient, and a continuum description are provided. In other words, a surface-bounded exosphere is described purely in terms of quantities on the surface, which can provide computational and conceptual advantages. The derived continuum equation can be used to calculate the steady-state distribution of the surface concentration of volatile water molecules. An analytic steady-state solution is obtained for an equatorial ring; it reveals the width and mass of the pileup of molecules at the morning terminator.

5.
Nature ; 449(7159): 192-4, 2007 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-17851518

RESUMO

Unlike Earth, where astronomical climate forcing is comparatively small, Mars experiences dramatic changes in incident sunlight that are capable of redistributing ice on a global scale. The geographic extent of the subsurface ice found poleward of approximately +/-60 degrees latitude on both hemispheres of Mars coincides with the areas where ice is stable. However, the tilt of Mars' rotation axis (obliquity) changed considerably in the past several million years. Earlier work has shown that regions of ice stability, which are defined by temperature and atmospheric humidity, differed in the recent past from today's, and subsurface ice is expected to retreat quickly when unstable. Here I explain how the subsurface ice sheets could have evolved to the state in which we see them today. Simulations of the retreat and growth of ground ice as a result of sublimation loss and recharge reveal forty major ice ages over the past five million years. Today, this gives rise to pore ice at mid-latitudes and a three-layered depth distribution in the high latitudes of, from top to bottom, a dry layer, pore ice, and a massive ice sheet. Combined, these layers provide enough ice to be compatible with existing neutron and gamma-ray measurements.


Assuntos
Meio Ambiente Extraterreno/química , Gelo/análise , Marte , Umidade , Luz Solar , Temperatura , Fatores de Tempo
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(4 Pt 1): 041201, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17500884

RESUMO

Permanently stable ground ice is found beneath a permanently frost free surface on Mars, and similar conditions exist in the Antarctic Dry Valleys. This phenomenon is due to a balance of the vapor pressure of the ice with the atmospheric humidity in the presence of large amplitude temperature oscillations. An exactly solvable model example shows that the fraction of time the atmosphere needs to be saturated to stabilize the ice decreases with temperature amplitude. It is estimated that for conditions that prevail on Mars today, the mean temperature needs to be about 5K lower than the frost point temperature for ground ice to be stable. A decomposition method to evaluate the contribution of short term weather events to ground ice stability is developed; when applied to a study site in the Dry Valleys, it reveals that the coldest periods contribute most to stabilization.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(2 Pt 2): 026307, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11863653

RESUMO

Probability density functions and conditional averages of velocity gradients derived from upper ocean observations are compared with results from forced simulations of the two-dimensional Navier-Stokes equations. Ocean data are derived from TOPEX satellite altimeter measurements. The simulations use rapid forcing on large scales, characteristic of surface winds. The probability distributions of transverse velocity derivatives from the ocean observations agree with the forced simulations, although they differ from unforced simulations reported elsewhere. The distribution and cross correlation of velocity derivatives provide clear evidence that large coherent eddies play only a minor role in generating the observed statistics.

8.
Proc Natl Acad Sci U S A ; 99(4): 1780-3, 2002 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-16578863

RESUMO

Measurements acquired by the Mars Orbiter Laser Altimeter on board the Mars Global Surveyor indicate that large drainage systems on Mars have geomorphic characteristics inconsistent with prolonged erosion by surface runoff. We find the topography has not evolved to an expected equilibrium terrain form, even in areas where runoff incision has been previously interpreted. By analogy with terrestrial examples, groundwater sapping may have played an important role in the incision. Longitudinally flat floor segments may provide a direct indication of lithologic layers in the bedrock, altering subsurface hydrology. However, it is unlikely that floor levels are entirely due to inherited structures due to their planar cross-cutting relations. These conclusions are based on previously unavailable observations, including extensive piece-wise linear longitudinal profiles, frequent knickpoints, hanging valleys, and small basin concavity exponents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...